233 research outputs found

    Coupled steroid and phosphorus leaching from cattle slurry at lysimeter scale

    Get PDF
    Water quality degradation can be caused by excessive agricultural nutrient transfers from fertilised soils exposed to wet weather. Mitigation measures within the EU Nitrates Directive aim to reduce this pressure by including ‘closed’ fertiliser spreading periods during wet months. For organic fertilisers such as slurry and manure, this closed period requires sufficient on-farm winter storage and good weather conditions to relieve storage at the end of the period. Therefore, robust scientific evidence is needed to support the measure. Incidental nutrient transfers of recently applied organic fertilisers in wet weather can also be complicated by synchronous transfers from residual soil stores and tracing is required for risk assessments. The combination of nutrient monitoring and biomarker analyses may aid this and one such biomarker suite is faecal steroids. Accordingly, this study investigated the persistence of steroids and their association with phosphorus during leaching episodes. The focus was on the coupled behaviour of steroids and total phosphorus (TP) concentrations in sub-surface hydrological pathways. Cattle slurry was applied to monolith lysimeters either side of a closed period and concentrations of both steroids and TP were monitored in the leachate. The study showed no significant effect of the treatment (average p = 0.17), though tracer concentrations did significantly change over time (average p = 0.001). While the steroidal concentration ratio was validated for herbivorous faecal pollution in the leachate, there was a weak positive correlation between the steroids and TP. Further investigation at more natural scales (hillslope/catchment) is required to confirm tracer behaviours/correlations and to compliment this sub-surface pathway study

    Comparing Extraction Methods for Biomarker Steroid Characterisation from Soil and Slurry

    Get PDF
    Clean water is a precious resource, and policies/programmes are implemented worldwide to protect and/or improve water quality. Faecal pollution can be a key contributor to water quality decline causing eutrophication through nutrient enrichment and pathogenic contamination. The robust sourcing of faecal pollutants is important to be able to target the appropriate sector and to engage managers. Biomarker technology has the potential for source confirmation, by using, for example the biomarker suite of steroids. Steroids have been used in the differentiation of human and animal faeces; however, there is no unequivocal extraction technique. Some of the methods used include (i) Soxhlet extraction, (ii) Bligh and Dyer (BD) extraction, and (iii) accelerated solvent extraction (ASE). The less costly and time intensive technique of ASE is particularly attractive, but a current research gap concerns further comparisons regarding ASE lipid extraction from soils/slurries compared with the more traditional Soxhlet and BD extractions. Accordingly, a randomised complete block experiment was implemented to assess differences between the three extraction methods, differences between the different sample types, and the interactions between these two factors. Following GC-MS, it was found that there was no significant difference between the results of the steroid extraction methods, regardless of the type of sample used, for the quantity of each steroid extracted. It was concluded that ASE could be used confidently instead of the more established steroid extraction methods, thereby delivering time and cost savings

    Using a multi-dimensional approach for catchment scale herbicide pollution assessments

    Get PDF
    peer-reviewedWorldwide herbicide use in agriculture, whilst safeguarding yields also presents water quality issues. Controlling factors in agricultural catchments include both static and dynamic parameters. The present study investigated the occurrence of herbicides in streams and groundwater in two meso-scale catchments with contrasting flow controls and agricultural landuse (grassland and arable land). Using a multi-dimensional approach, streams were monitored from November 2018 to November 2019 using Chemcatcher® passive sampling devices and groundwater was sampled in 95 private drinking water wells. The concentrations of herbicides were larger in the stream of the Grassland catchment (8.9–472.6 ng L−1) dominated by poorly drained soils than in the Arable catchment (0.9–169.1 ng L−1) dominated by well-drained soils. Incidental losses of herbicides during time of application and low flows in summer caused concentrations of MCPA, Fluroxypyr, Trichlorpyr, Clopyralid and Mecoprop to exceeded the European Union (EU) drinking water standard due to a lack of dilution. Herbicides were present in the stream throughout the year and the total mass load was higher in winter flows, suggesting a persistence of primary chemical residues in soil and sub-surface environments and restricted degradation. Losses of herbicides to the streams were source limited and influenced by hydrological conditions. Herbicides were detected in 38% of surveyed drinking water wells. While most areas had concentrations below the EU drinking water standard some areas with well-drained soils in the Grassland catchment, had concentrations exceeding recommendations. Individual wells had concentrations of Clopyralid (619 ng L−1) and Trichlorpyr (650 ng L−1). Despite the study areas not usually associated with herbicide pollution, and annual mass loads being comparatively low, many herbicides were present in both surface and groundwater, sometimes above the recommendations for drinking water. This whole catchment assessment provides a basis to develop collaborative measures to mitigate pollution of water by herbicides.Horizon 2020 Framework Programm

    A sub-field scale critical source area index for legacy phosphorus management using high resolution data

    Get PDF
    AbstractDiffuse phosphorus (P) mitigation in agricultural catchments should be targeted at critical source areas (CSAs) that consider source and transport factors. However, development of CSA identification needs to consider the mobilisation potential of legacy soil P sources at the field scale, and the control of (micro)topography on runoff generation and hydrological connectivity at the sub-field scale. To address these limitations, a ‘next generation’ sub-field scale CSA index is presented, which predicts the risk of dissolved P losses in runoff from legacy soil P. The GIS-based CSA Index integrates two factors; mobile soil P concentrations (water extractable P; WEP) and a hydrologically sensitive area (HSA) index. The HSA Index identifies runoff-generating-areas using high resolution LiDAR Digital Elevation Models (DEMs), a soil topographic index (STI) and information on flow sinks and effects on hydrological connectivity. The CSA Index was developed using four intensively monitored agricultural catchments (7.5–11km2) in Ireland with contrasting agri-environmental conditions. Field scale soil WEP concentrations were estimated using catchment and land use specific relationships with Morgan P concentrations. In-stream total reactive P (TRP) concentrations and discharge were measured sub-hourly at catchment outlet bankside analysers and gauging stations during winter closed periods for fertiliser spreading in 2009–14, and hydrograph/loadograph separation methods were used to estimate TRP loads and proportions from quickflow (surface runoff). A strong relationship between TRP concentrations in quickflow and soil WEP concentrations (r2=0.73) was used to predict dissolved P concentrations in runoff at the field scale, which were then multiplied by the HSA Index to generate sub-field scale CSA Index maps. Evaluation of the tool showed a very strong relationship between the total CSA Index value within the HSA and the total TRP load in quickflow (r2=0.86). Using a CSA Index threshold value of ≥0.5, the CSA approach identified 1.1–5.6% of catchment areas at highest risk of legacy soil P transfers, compared with 4.0–26.5% of catchment areas based on an existing approach that uses above agronomic optimum soil P status. The tool could be used to aid cost-effective targeting of sub-field scale mitigation measures and best management practices at delivery points of CSA pathways to reduce dissolved P losses from legacy P stores and support sustainable agricultural production

    Quantifying MCPA load pathways at catchment scale using high temporal resolution data

    Get PDF
    Publication history: Accepted - 21 May 2022; Published online - 24 May 2022.Detection of the agricultural acid herbicide MCPA (2-methyl-4-chlorophenoxyacetic acid) in drinking water source catchments is of growing concern, with economic and environmental implications for water utilities and wider ecosystem services. MCPA is poorly adsorbed to soil and highly mobile in water, but hydrological pathway processes are relatively unknown at the catchment scale and limited by coarse resolution data. This understanding is required to target mitigation measures and to provide a framework to monitor their effectiveness. To address this knowledge gap, this study reports findings from river discharge and synchronous MCPA concentration datasets (continuous 7 hour and with additional hourly sampling during storm events) collected over a 7 month herbicide spraying season. The study was undertaken in a surface (source) water catchment (384 km2—of which 154 km2 is agricultural land use) in the cross-border area of Ireland. Combined into loads, and using two pathway separation techniques, the MCPA data were apportioned into event and baseload components and the former was further separated to quantify a quickflow (QF) and other event pathways. Based on the 7 hourly dataset, 85.2 kg (0.22 kg km 2 by catchment area, or 0.55 kg km 2 by agricultural area) of MCPA was exported from the catchment in 7 months. Of this load, 87.7 % was transported via event flow pathways with 72.0 % transported via surface dominated (QF) pathways. Approximately 12 % of the MCPA load was transported via deep baseflows, indicating a persistence in this delayed pathway, and this was the primary pathway condition monitored in a weekly regulatory sampling programme. However, overall, the data indicated a dominant acute, storm dependent process of incidental MCPA loss during the spraying season. Reducing use and/or implementing extensive surface pathway disconnection measures are the mitigation options with greatest potential, the success of which can only be assessed using high temporal resolution monitoring techniques.This work was carried out as part of Source to Tap (IVA5018), a project supported by the European Union’s INTERREG VA Programme, managed by the Special EU Programmes Body (SEUPB)
    • …
    corecore